Hopf-Galois module structure of tame radical extensions of square-free degree

George Prestidge

School of Computing and Mathematics Keele University Research supervised by Dr. Paul Truman

Hopf algebras and Galois module theory conference Omaha, Nebraska / Online

Some historical results

Theorem (Noether, 1932)

If L/K is a tamely ramified Galois extension of number fields with Galois group G, then \mathcal{O}_L is a locally free \mathcal{O}_KG -module (of rank one).

Remark

In general, criteria for global freeness are more delicate.

- Del Corso and Rossi (2013) determined criteria for global freeness for L/K a tame Kummer extension (see the following slide)
- Truman (2020) studied a non-normal analogue of the result of Del Corso and Rossi for tamely ramified extensions of prime degree using Hopf-Galois theory

Aim

Our main aim is to generalise the work of Truman to certain families of tamely ramified extensions of square-free degree which have a unique almost classical Hopf-Galois structure.

The result of Del Corso and Rossi

Let L/K be a tamely ramified Kummer extension of exponent m and degree N.

Definition

For $\alpha_1,...,\alpha_r$ a set of Kummer generators for L/K, define $a_i = \alpha_i^m$, and write α for $(\alpha_1,...,\alpha_r)$ and a for $(a_1,...,a_r)$. Similarly if $i_1,...,i_r \in \mathbb{N}$ write i for $(i_1,...,i_r)$.

Theorem (Del Corso and Rossi, 2013)

The extension L/K has a normal integral basis iff there exists a set of integral Kummer generators α such that the following conditions hold.

- The ideals $\mathcal{B}_{\pmb{i}} = \prod_{\mathfrak{p}} \mathfrak{p}^{\lfloor \frac{v_{\mathfrak{p}}(\pmb{a}^{\pmb{i}})}{m} \rfloor}$ are principal for all \pmb{i} .
- The congruence $\sum_{i} \frac{\alpha^{i}}{x_{i}} \equiv 0 \pmod{N}$ holds for some $x_{i} \in \mathcal{O}_{K}$ with $\mathcal{B}_{i} = x_{i}\mathcal{O}_{K}$.

Further, when this is the case, the integer $\omega = \frac{1}{N} \sum_{\pmb{i}} \frac{\alpha^{\pmb{i}}}{x_{\pmb{i}}}$ generates \mathcal{O}_L over $\mathcal{O}_K G$.

Hopf-Galois module theory

Now let L/K be a finite extension of number fields and suppose L/K is Hopf-Galois for some Hopf algebra H. Using Hopf-Galois module theory, we have a Hopf-Galois analogue of the normal basis theorem.

Theorem

L is a free H-module (of rank one).

Definition

We can define the associated order of \mathcal{O}_L in H as

$$A_H := \{ h \in H | h.x \in \mathcal{O}_L \text{ for all } x \in \mathcal{O}_L \}.$$

Hopf-Galois module theory is concerned with the following properties of $\mathcal{A}_{H}.$

- The structure of A_H as a ring
- The structure of \mathcal{O}_L as an \mathcal{A}_H -module
 - i.e. whether \mathcal{O}_L is locally or globally free as an \mathcal{A}_H -module

Setup for the extension

- Let K be a number field
- Let m be an odd square-free positive integer with factorisation $p_1...p_r$
- Let ζ_m be a primitive m^{th} root of unity
- Assume that p is unramified in K for all p|m
 - ▶ Note that this implies that $\zeta_{p_i} \notin K$ for $1 \leq i \leq r$
- Let $L = K(\alpha_1, ..., \alpha_r)$ where each $a_i := \alpha_i^{p_i} \in K$
- Assume that $a_i \in K \backslash K^{p_i}$ for all i
 - ▶ This ensures that the extension has degree *m*
- Assume that if $\mathfrak{p}|p_i\mathcal{O}_K$, then \mathfrak{p} is unramified in $K(\alpha_j)$ for all $j \neq i$
 - ▶ This allows us to apply arithmetic disjointness to determine local integral bases for $\mathfrak{p}|m\mathcal{O}_K$
- Let E be the Galois closure of L/K
- It can be shown that $E = L(\zeta_m)$

Properties of the Galois group

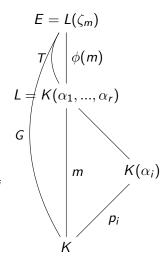
- Let G = Gal(E/K)
- Let T = Gal(E/L)
- We have $G = \langle \sigma_1, ..., \sigma_r, \tau_1, ..., \tau_r \rangle$ and $T = \langle \tau_1, ..., \tau_r \rangle$ where

$$\sigma_i(\alpha_i) = \zeta_{p_i}\alpha_i, \ \sigma_i(\alpha_j) = \alpha_j, \ \sigma_i(\zeta_{p_j}) = \zeta_{p_j},$$

$$\tau_i(\alpha_j) = \alpha_j, \ \tau_i(\zeta_{p_i}) = \zeta_{p_i}^{d_i} \ \text{and} \ \tau_i(\zeta_{p_j}) = \zeta_{p_j}$$

for d_i some primitive root modulo p_i

• $G \cong S \rtimes T$ with $S := \langle \sigma_1, ..., \sigma_r \rangle$



Properties of the Galois group

Lemma

Since Gal(E/L) (the group T) has a normal complement in G (namely S), the extension L/K is almost classically Galois.

Remark

Since it can be shown that S is the unique normal complement to T in G, the extension L/K has a unique almost classical Hopf-Galois structure.

Remark

For r=2, this is the only Hopf-Galois structure admitted by the extension.

Properties of the Hopf-Galois structure

- The subgroup of Perm(G/T) which gives rise to the unique almost classical Hopf-Galois structure is $\lambda(S)$
- The corresponding Hopf algebra is $H = E[\lambda(S)]^G$
- H has a K-basis consisting of mutually orthogonal idempotents

$$e_{i} = \frac{1}{m} \prod_{k=1}^{r} \sum_{n=0}^{p_{k}-1} \zeta_{p_{k}}^{-i_{k}n_{k}} \lambda(\sigma_{k})^{n_{k}}$$

- These give rise to an isomorphism of K-algebras, $H \cong K^m$
- H acts on L in the following way

$$e_{\pmb{i}}(\pmb{lpha^{\pmb{j}}}) = egin{cases} \pmb{lpha^{\pmb{j}}} & ext{if } \pmb{i} = \pmb{j} \ 0 & ext{otherwise} \end{cases}$$

Determining criteria for the extension to be tamely ramified

Lemma

L/K is tame iff all α_i can be chosen to satisfy $a_i := \alpha_i^{p_i} \equiv 1 \pmod{p_i^2 \mathcal{O}_K}$.

Proof.

- Firstly, we apply the standard result that L/K is tame iff the sub-extensions $K(\alpha_i)/K$ are tame for all i.
- Secondly, we apply a result of Truman (2020) that $K(\alpha_i)/K$ is tame iff α_i can be chosen to satisfy $a_i := \alpha_i^{p_i} \equiv 1 \pmod{p_i^2 \mathcal{O}_K}$.

Remark

Henceforth, we will assume that these congruences hold.

Determining local integral bases

Definition

We will use $\pi_{\mathfrak{p}}$ to denote a uniformiser in $K_{\mathfrak{p}}$.

Definition

Henceforth we will use q_i to denote the integer $\frac{m}{p_i}$.

For prime ideals $\mathfrak{p} \nmid m\mathcal{O}_K$ we study each sub-extension and use properties of arithmetic disjointness and obtain that a local integral basis is given by

$$\left\{\frac{\pmb{\alpha^i}}{\pi_{\mathfrak{p}}^{\lfloor\frac{\mathsf{v}_{\mathfrak{p}}(\prod_{j=1}^r a_j^{jq_j})}{m}\rfloor}}\right\}$$

Determining local integral bases

For prime ideals $\mathfrak{p}|m\mathcal{O}_K$ we use a different approach

- Truman (2020) determined local integral bases for the prime degree case
- We note that each subextension $K(\alpha_i)/K$ has prime degree
- The assumption that if $\mathfrak{p}|p_i\mathcal{O}_K$, then \mathfrak{p} is unramified in $K(\alpha_j)$ for all $j \neq i$ allows us to apply arithmetic disjointness here
- We obtain that a local integral basis for $\mathfrak{p}|p_i\mathcal{O}_K$ is the "product" of the following sets

$$\left\{ \begin{aligned} &\left\{ 1, \alpha_i, \alpha_i^2, ..., \alpha_i^{p_i - 2}, \frac{\left(1 + \alpha_i + ... + \alpha_i^{p_i - 1}\right)}{p_i} \right\} \\ &\left\{ \frac{\boldsymbol{\alpha^j}}{\pi_{\mathfrak{p}}^{\lfloor \frac{v_{\mathfrak{p}}(\prod_{k=1}^r \boldsymbol{\beta_k^{j_k} q_k})}{m} \rfloor}} \right| \text{ where the } i^{th} \text{ component of } \boldsymbol{j} \text{ is } 0 \right\} \end{aligned}$$

Determining the associated order

Definition

Let \mathcal{M} denote the unique maximal order in H.

For $\mathfrak p$ a prime ideal of $\mathcal O_K$, let $\mathcal M_{\mathfrak p}$ denote the unique maximal order in $H_{\mathfrak p}$.

Proposition (Truman, 2011)

For prime ideals $\mathfrak{p} \nmid m\mathcal{O}_K$, we have $\mathcal{A}_{H,\mathfrak{p}} = \mathcal{M}_{\mathfrak{p}}$ and $\mathcal{O}_{L,\mathfrak{p}}$ is free over $\mathcal{A}_{H,\mathfrak{p}}$.

In our case $\mathcal{M}_{\mathfrak{p}}=\mathcal{O}_{K,\mathfrak{p}}\langle(e_{\boldsymbol{i}})\rangle$.

Proposition

For prime ideals $\mathfrak{p}|m\mathcal{O}_K$, $\mathcal{O}_{L,\mathfrak{p}}$ is a free $\mathcal{A}_{H,\mathfrak{p}}$ -module (of rank one).

For prime ideals $\mathfrak{p}|m\mathcal{O}_K$ we determine the associated order and prove freeness "all in one". We will sketch the proof of freeness for prime ideals $\mathfrak{p}|m\mathcal{O}_K$ on the following slide.

Determining the associated order

- Let i be such that $\mathfrak{p}|p_i\mathcal{O}_K$
- We fix a particular candidate generator x_{p-1} which is chosen to have the largest power of p_i in the denominator
- We determine elements $a_i \in H_n$ such that $a_i \cdot x_{n-1} = x_i$ for all integral basis elements x_i
- Note that these elements exist because our "candidate generator" generates $L_{\mathfrak{p}}$ as an $H_{\mathfrak{p}}$ -module
- To determine whether $a_i \in A_{H,p}$ we need to evaluate $a_i.x_i$ for all basis elements x;
- $a_i \in \mathcal{A}_{H,\mathfrak{p}}$ iff $a_i.x_i \in \mathcal{O}_{L,\mathfrak{p}}$ for all integral basis elements x_i
- It turns out that the elements a; are actually in the associated order as claimed
- Hence the elements a_i form an $\mathcal{O}_{K,v}$ -basis of the associated order and $\mathcal{O}_{L,\mathfrak{p}}=\mathcal{A}_{H,\mathfrak{p}}.x_{\mathbf{p}-\mathbf{1}}$
- In fact a stronger result is true here, we have $a_i \in \mathcal{O}_L[\lambda(S)]^G$

Using idèlic theory to derive conditions for global freeness

The main result that we will use to derive conditions for global freeness is the following.

Theorem (Bley and Johnston, 2008)

 \mathcal{O}_L is a free \mathcal{A}_H -module iff

- \mathcal{O}_L is a locally free \mathcal{A}_H -module
- \mathcal{MO}_L is a free \mathcal{M} -module with a generator $x \in \mathcal{O}_L$.

We have shown that \mathcal{O}_L is a *locally* free \mathcal{A}_H -module.

To determine when \mathcal{MO}_L is free \mathcal{M} -module with a generator $x \in \mathcal{O}_L$, we use the idèlic description of $Cl(\mathcal{M})$ (the locally free class group of \mathcal{M}).

- ullet \mathcal{MO}_L is a free \mathcal{M} -module iff \mathcal{MO}_L has trivial class in $\mathcal{C}\mathcal{I}(\mathcal{M})$
- The isomorphism $H \cong K^m$ gives rise to an isomorphism of class groups
- $CI(\mathcal{M})\cong \frac{\mathbb{J}(H)}{H^{\times}\mathbb{U}(\mathcal{M})}\cong CI(\mathcal{O}_K)^m$

Using idèlic theory to derive conditions for global freeness

ullet The class of \mathcal{MO}_L corresponds to the tuple $(\mathcal{B}_{m{i}})$ where

$$\mathcal{B}_{\pmb{i}} = \prod_{\mathfrak{p}} \mathfrak{p}^{\lfloor rac{v_{\mathfrak{p}}(\pmb{a}^{\pmb{i}})}{m}
floor}$$

• \mathcal{MO}_L is a free \mathcal{M} -module with a generator $x \in \mathcal{O}_L$ iff the ideals \mathcal{B}_i are principal with generators x_i such that $\sum_i \frac{\alpha^i}{x_i} \equiv 0 \pmod{m\mathcal{O}_L}$ Our conclusion is the following.

Theorem

 \mathcal{O}_L is a free \mathcal{A}_H -module iff there exist $\alpha_1,...,\alpha_r\in\mathcal{O}_L$ such that

- $L = K(\alpha_1, ..., \alpha_r)$
- $a_i := \alpha_i^{p_i} \in \mathcal{O}_K$ for all $1 \le i \le r$
- The ideals \mathcal{B}_{i} as defined above are principal with generators x_{i} such that $\sum_{i} \frac{\alpha^{i}}{x_{i}} \equiv 0 \pmod{m\mathcal{O}_{L}}$

Furthermore, in this case the element $\frac{1}{m}\sum_{\pmb{i}}\frac{\alpha^{\pmb{i}}}{x_{\pmb{i}}}$ is a free generator of \mathcal{O}_L as an \mathcal{A}_H -module

Rewriting the extension using a single radical generator

Remark

It is possible to describe the extension as $L=K(\delta)$ with the minimum polynomial of δ over K being x^m-d (so that the extension has degree m) Using this point of view the extension looks more like a cyclic Kummer extension

Translating to this description gives a cleaner presentation of the final result from which it is easier to see the connection with the result of Del Corso and Rossi

Note that using the description of $L = K(\alpha_1, ..., \alpha_r)$ eases obtaining the conditions for tameness and the calculations used to determine the local integral bases

Further work

- Multiple mth roots (with m square-free)
 - ▶ i.e. study extensions of the form $L = K(\alpha_1, ..., \alpha_r)$ where each $\alpha_i^m \in K$
- Single p^r root
 - i.e. study extensions of the form $L = K(\alpha)$ where $\alpha^{p^r} \in K$
- Work towards a complete analogue of the Del Corso and Rossi result

Thank you for your attention.